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Abstract: Graphene  field-effect  transistors  (GFET)  have  attracted  much  attention  in  the  radio  frequency  (RF)  and  microwave
fields because of  its  extremely high carrier  mobility.  In this  paper,  a  GFET with a gate length of  5 μm is  fabricated through the
van der  Walls  (vdW) transfer  process,  and then the existing large-signal  GFET model  is  described,  and the model  is  implemen-
ted in  Verilog-A for  analysis  in  RF and microwave circuits.  Next  a  double-balanced mixer  based on four  GFETs is  designed and
analyzed in  advanced design system (ADS)  tools.  Finally,  the  simulation results  show that  with  the  input  of  300 and 280 MHz,
the IIP3 of the mixed signal is 24.5 dBm.
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1.  Introduction

Since  the  discovery  of  monolayer  graphene[1],  graphene
has  become  an  attractive  candidate  to  replace  or  supple-
ment  traditional  semiconductors  due  to  its  excellent  electric-
al  and  mechanical  properties,  as  well  as  high  compatibility
with  standard  processes.  Compared  with  semiconductors,
only  one  atomic  layer  thickness,  ultra-high  carrier  mobili-
ty[2−4] and higher saturation velocity[5] make it possible to pro-
duce  graphene  field-effect  transistors  (GFETs)  with  higher
cut-off frequencies[6]. Bipolar transmission is a main feature of
GFETs,  that is,  the conductivity of GFETs can be controlled by
holes or electrons. It results in a ‘V’-shaped transfer characterist-
ic  (Ids–Vgs)[1].  Due  to  its  unique  ambipolar  transport  properti-
es and extremely high mobility, graphene provides a wide ran-
ge of applications for radio frequency and microwave fields.

Because  of  these  excellent  characteristics,  graphene  was
used  in  practice,  such  as  frequency  multipliers[7, 8],  voltage
amplifiers[9],  ring  oscillators[10],  and  mixers[11].  Graphene  is
even  being  studied  in  fields  related  to  RF  switches[12] and
memory[13].  The study of  graphene mixers  is  particularly  con-
cerned.  Mixers  are  essential  for  almost  all  telecommunica-
tions and radar equipment, and limit the intermodulation per-
formance  of  the  receiver  front  end.  Schottky  barrier  diodes
and  active  FETs  are  the  most  commonly  used  mixer  ele-
ments  in  microwave  systems,  but  the  linearity  of  these  mix-
ers  is  very  low  due  to  the  strong  nonlinearity  of  these
devices.  In  contrast,  the  linear  output  characteristics  of
graphene makes it particularly suitable for such circuit applica-
tions.  Although  unsaturation  is  detrimental  to  traditional
amplifier  circuits,  it  is  an  advantage  of  resistive  mixers  now.
Palacios et  al.  prepared  a  graphene  resistive  mixer  for  the

first  time  using  the  characteristics  of  graphene  bipolar  trans-
port.  Conversion loss was 30–40 dB and IIP3 was 13.8 dBm at
10  MHz[14].  In  Ref.  [15],  the  first  graphene  integrated  circuit
work  was  to  realize  a  resistive  mixer.  Moon et  al.  also  used
the  structure  to  prepare  a  graphene  mixer,  and  showed  the
IIP3 of 22 dBm at a LO power of –3.5 dBm[16].

This  paper  explores  the  potential  of  graphene  mixers.  In
order  to  further  improve  the  linearity  of  the  mixers,  a
graphene double-balanced mixer  with four GFETs with cross-
coupling  structure  is  designed.  The  circuit  structure  is  based
on a proposed GFET large-signal model in ADS for circuit simu-
lation[17].  And it  achieves IIP3 of 24.5 dBm with a LO signal of
–2 dBm at  280 MHz.  The main performance characteristics  of
the  double-balanced  GFET  mixer  are  compared  with  CMOS
technologies and the reported GFET mixer. 

2.  Monolayer graphene field-effect transistor
 

2.1.  GFET fabrication

In this work, the transistor was fabricated on a high-resist-
ance silicon (>10 kΩ·cm) substrate with 1 μm thick silicon ox-
ide. Monolayer graphene is grown on Ge substrate by chemic-
al  vapor  deposition  (CVD)  method[18],  and  germanium-based
graphene is  used as  a  smooth substrate.  Then 50 nm Au was
evaporated  by  UV  lithography  and  electron  beam  as  source
and  drain,  next  3  nm  Al  was  evaporated  by  electron  beam,
after  that  30 nm Al2O3 was grown by ALD as the gate dielec-
tric  layer,  and  then  50  nm  Au  was  evaporated  by  electron
beam as the top gate electrode. Finally, the PVA solution was
dripped,  and  after  the  PVA  was  dried,  the  metal  (source  and
drain)/oxide  layer  (gate  dielectric  layer)/metal  (gate)  sand-
wich  layer  was  transferred  to  the  SiO2/Si  (>10  kΩ·cm)  with
graphene  channel.  A  GFET  is  formed  on  the  substrate,  and
the  graphene  channel  forms  a  vdW  contact  with  the  contact
electrode. This transfer process reduces the damage of photo-
lithography  to  the  graphene  channel  and  the  contact  resist-
ance, which can have better device performance[19−21].
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Fig.  1(a)  shows  a  3D  schematic  diagram  of  GFETs  on
SiO2/Si. Fig.  1(b)  is  an  optical  microscope  image  of  GFETs
with a dual-finger gate and ground–signal–ground (GSG) struc-
ture  for  the  RF  test.  The  gate  length Lg is  5 μm  and  gate
width W is  70 μm. Fig.  1(c)  presents  the  transfer  characterist-
ic  curve (Ids–Vgs)  of  the GFET at Vds = 0.1 to 1 V and the Dirac
point  was  observed  to  be  located  at  around Vdirac =  –0.2  V.
We adopt standard de-embedding method for avoiding the in-
fluence  of  parasitic  capacitance  and  inductance  of  the  GSG
pad[22].  And  we  prepared  the  open  circuit  and  short  circuit
structure of the same device size to ensure reliable de-embed-
ding  results.  In Fig.  1(d),  we  show  the  current  gain  |H21|  and
the  unilateral  gain  |U|  of  the  GFET  with Lg =  5 μm  and W =
70 μm  at Vds=  0.8  V.  The  highest  (intrinsic)  maximum  oscilla-
tion  frequency fMAX of  ~603  MHz  and  the  highest  (intrinsic)
cutoff frequency fT of ~368 MHz are found. 

2.2.  A large-signal model of monolayer GFET

During  circuit  design,  accurate  GFET  models  are  requi-
red  to  predict  device  and  circuit  performance.  The  small  sig-
nal model cannot describe the nonlinear effects of the device
to  meet  the  simulation  requirements  of  nonlinear  circuits
such as mixers and oscillators. However, the large signal mod-
el  can  give  the  complete  characteristics  of  the  device.  Sever-
al  models  of  GFET  were  developed  recently[23−27].  This  article
uses  a  monolayer  GFET  large-signal  behavior  model  develo-
ped by Jan Stake et al.  and based on the drift-diffusion equa-
tion[17].

In this model, the graphene quantum capacitance will be
ignored when the thickness of the gate dielectric layer is great-
er  than 10 nm. And we also ignore the quantum capacitance
of graphene. The model can be implemented by Verilog-A lan-
guage in ADS environment.

The schematic of a monolayer GFET large-signal model is

presented  in Fig.  2.  The  current  in  the  channel  can  be  ex-
pressed as:
 

Ids =
μeVdiracQ√
 +

μe ∣VgsVds∣
Lvsat

W
L
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Fig. 1. (Color online) (a) Schematic of top-gated Al2O3/monolayer graphene FET. (b) Photograph of a dual-finger gate 5-μm-length and 70-μm-
wide graphene FET. (c) Measured data for the Ids–Vgs characteristic curves at Vds = 0.1 to 1 V. (d) Current gain, |H21|, and unilateral gain, U, with de-
embedding at Vds = 0.8 V.

 

Fig. 2. Large-signal model of a GFET. Cpd, Cpg, Lg, Ld and Ls are pad para-
sitic capacitance values and inductances, Rg is the gate resistance, and
Rs and Rd are the source and drain resistances including contact and ac-
cess resistances.
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Ids =
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Ids =
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L
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with Vgs < 0, Vgd < 0.
Among them, the following function is defined as: 

f (x, y) = x
√
 + x − y

√
 + y +

ln
√
 + x + x√
 + y + y

, (5)

vsat = vFβ


√
n
 +

C(Vgs + Vgd)
q

Vgs = Vgs/Vdirac Vgd = Vgd/Vdirac

where  is  the  saturation  velocity

of  the  carrier  at  the  average  gate  voltage, C =  (Cgs + Cgd )/
(LW)  is  the  gate  capacitance  per  area, νF =  108 cm/s  and β
relates to the optical phonon wavelength of the dominant scat-
tering  phonon, Q0 (q×n0)  is  the  residual  charge  density, μ is
the  carrier  mobility, Vdirac is  the  Dirac  voltage,  and  defining:

 and .
Resistance  between  the  source  and  drain  can  be  ex-

pressed as: 

Rd = Rs = R + Rext(Vgs, Vgd), (6)
 

Rext (Vgs, Vgd) =  + tanhVgs


 + tanhVgd


Rext, (7)

where R0 is  the  contact  resistance  and Rext0 is  an  extra  resist-
ance when the majority carriers are electron.

Cgd = −Y/jω
Cgs =(Y + Y)/jω Cds = Im(Y + Y)/ω

Intrinsic  capacitors  were  extracted  by S-parameters
biased  at  Dirac  voltage  (Vgs = Vdirac, gm =  0).  By  de-embed-
ding  the S-parameters,  we  can  get: ,

, .  The  model  parameter
extraction  method  in Fig.  2 is  the  same  as  the  method  de-
scribed  in  Ref.  [17],  and  the  parameters  were  extracted  as
shown in Table 1. The behavior model is implemented by Veri-
log-A and is compatible with ADS. As shown in Fig. 3, the sol-
id  lines  are  the measured output  characteristic  curve (Ids–Vds)
of  the  GFET,  showing  excellent  linearity.  The  dotted  lines  are
the output characteristic  curves of  the GFET DC simulation.  It
can  be  seen  that  the  model  is  consistent  with  the  measure-
ment  results.  The  large-signal  model  will  be  applied  to  sub-
sequent mixer circuit design in section 3. 

3.  GFET double-balanced mixer
 

3.1.  GFET mixer circuit design

Compared with  a  single  GFET mixer,  a  graphene double-
balanced  mixer  can  have  better  linearity  and  can  suppress
the  feedthrough  of  RF  and  LO  signals[28].  The  circuit  diagram
of  the GFET double-balanced mixer  in  this  article  is  shown in
Fig.  4.  It  consists  of  four  GFETs  with  cross-coupling  structure
and  four  LC  components,  in  which  the  inductance  is  25  nH
and  the  capacitance  is  25  pF.  The  LC  component  has  a  filter-
ing  function,  and  LO,  RF  and  IF  are  all  differential  signals.
The four GFETs (with Lg = 5 μm, W = 70 μm) operate at Vgs =
–0.6  V  and Vds =  0.8  V.  And  the  mixer  is  simulated  in  ADS.
Due  to  the  linear  characteristics  of  the  GFET,  the  mixer  is  ex-
pected to have a high linear output. 

3.2.  Simulation of the GFET double-balanced mixer

Fig.  5 shows  the  RF  performance  of  the  GFET  double-
balanced  mixer. Fig.  5(a)  presents  the  simulated  conversion
loss  (CL)  versus  LO  power  with  a  minimum  CL  of  23  dB  at
300  MHz. Fig.  5(b)  is  IF  power  versus  RF  power  with fLO =
280  MHz  (4  dBm)  and fRF =  300  MHz.  The  dots  in  the  figure
are  simulated  data,  and  the  line  is  the  linear  fitting,  indicat-
ing  that  the  1  dB  compression  point  is  6.5  dBm. Fig.  5(c)  re-
veals  the  simulated two-tone spectra  of  the  mixer.  The third-
order  intermodulation  product  (IM3)  is  85  dBm  lower  than  IF
with  RF  power  of  −20  dBm.  According  to  IIP3  =  RFin +  (IF  –
IM3)/2,  IIP3  is  calculated  as  22.5  dBm.  The  fundamental  and
the third-order term in the output signal versus RF power are

Table 1.   GFET large-signal model parameters.

Parameter Value Parameter Value

Cgs 327 fF Lg 83 pH
Cgd 8 fF Rg 30 Ω
Cds 15 fF R0 326 Ω
Cpd 32 fF Rext0 26 Ω
Cpg 35 fF μe 1108 cm2/(V·s)
Ls 25 pH μh 2080 cm2/(V·s)
Ld 39 pH Vdirac –0.2 V

 

Fig. 3. (Color online) Model versus measured data for the Ids–Vds charac-
teristic curves at Vgs = –3 to 3 V.

 

Fig. 4. Schematic of the GFET double-balanced mixer.
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shown in Fig.  5(d).  After  linear  fitting and expansion,  the  IIP3
is displayed as 24.5 dBm. In Table 2, the main performance of
the  mixer  reported  in  this  article  is  compared  with  the  re-
cently  reported  GFET  mixer  and  CMOS  mixer.  It  can  be  seen
from  the  table  that  the  designed  mixer  in  this  paper  has
more excellent linearity. 

4.  Conclusion

In  this  work,  we  prepared  a  monolayer  GFET  by  transfer
process and assessed the DC and RF characterization. And we
performed  large-signal  modeling  on  the  GFET,  which  is  writ-
ten in Verilog-A and connected in ADS. A double-balanced mix-
er  is  designed  based  on  the  GFET  and  it  provides  a  IIP3  of
24.5  dBm  at  300  MHz.  Compared  with  traditional  CMOS  mix-
ers and GFET mixers that have been reported, it has better lin-
earity.  In  addition,  the  operating  frequency  of  the  mixer  is
only limited by the fT of  the GFET, and the gate length of the
GFET can be reduced to broaden the operating frequency[34]. 
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